
8
Distributed Systems

Uwe R. Zimmer - The Australian National University

Systems, Networks & Concurrency 2020

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 515 of 758 (chapter 8: “Distributed Systems” up to page 641)

References for this chapter

[Bacon1998]
 Bacon, J
 Concurrent Systems
 Addison Wesley Longman
Ltd (2nd edition) 1998

 [Ben2006]
 Ben-Ari, M
 Principles of Concurrent and Dis-
tributed Programming
 second edition, Prentice-Hall 2006

 [Schneider1990]
 Schneider, Fred
 Implementing fault-tolerant services using
the state machine approach: a tutorial
 ACM Computing Surveys 1990
vol. 22 (4) pp. 299-319

 [Tanenbaum2001]
 Tanenbaum, Andrew
 Distributed Systems: Prin-
ciples and Paradigms
 Prentice Hall 2001

 [Tanenbaum2003]
 Tanenbaum, Andrew
 Computer Networks
 Prentice Hall, 2003

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 516 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

OSI network reference model

Standardized as the
Open Systems Interconnection (OSI) reference model by the

International Standardization Organization (ISO) in 1977

• 7 layer architecture

• Connection oriented

Hardy implemented anywhere in full …

…but its concepts and terminology are widely used,
when describing existing and designing new protocols …

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 517 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 518 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

1: Physical Layer

• Service: Transmission of a raw bit stream
over a communication channel

• Functions: Conversion of bits into electrical or optical signals

• Examples: X.21, Ethernet (cable, detectors & amplifi ers)

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 519 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

2: Data Link Layer

• Service: Reliable transfer of frames over a link

• Functions: Synchronization, error correction, flow control

• Examples: HDLC (high level data link control protocol),
LAP-B (link access procedure, balanced),
LAP-D (link access procedure, D-channel),
LLC (link level control), …

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 520 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

3: Network Layer

• Service: Transfer of packets inside the network

• Functions: Routing, addressing, switching, congestion control

• Examples: IP, X.25

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 521 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

4: Transport Layer

• Service: Transfer of data between hosts

• Functions: Connection establishment, management,
termination, flow-control, multiplexing, error detection

• Examples: TCP, UDP, ISO TP0-TP4

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 522 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

5: Session Layer

• Service: Coordination of the dialogue between application programs

• Functions: Session establishment, management, termination

• Examples: RPC

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 523 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

6: Presentation Layer

• Service: Provision of platform independent coding and encryption

• Functions: Code conversion, encryption, virtual devices

• Examples: ISO code conversion, PGP encryption

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 524 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

7: Application Layer

• Service: Network access for application programs

• Functions: Application/OS specific

• Examples: APIs for mail, ftp, ssh, scp, discovery protocols …

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 525 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Serial Peripheral Interface (SPI)

 Used by gazillions of devices … and
it’s not even a formal standard!

 Speed only limited by what
both sides can survive.

 Usually push-pull drivers,
i.e. fast and reliable, yet not friendly to wrong
wiring/programming.

1.8” COLOR TFT LCD display from Adafruit SanDisk marketing photo

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 526 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Serial Peripheral Interface (SPI)
Full Duplex, 4-wire, fl exible clock rate

Receive shift register

Transmit shift register

Clock generator

Receive shift register

Transmit shift register
MISO MISO

MOSI MOSI

SCK SCK

NSS CS
Slave selector

Master Slave

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 527 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Serial Peripheral Interface (SPI)

© 2020 U R Zi Th A t li N ti l U i it 527 f 758 (h t 88

MISO

MOSI

SCK

CS

time

Set

Sample

Set Set Set Set Set Set Set

Sample Sample Sample Sample Sample Sample Sample

Receive shift register

Transmit shift register

Clock generator

Receive shift register

Transmit shift register
MISO MISO

MOSI MOSI

SCK SCK

NSS CS
Slave selector

Master Slave

Clock phase and
polarity need to
be agreed upon

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 528 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards (SPI)

Serial Peripheral Interface (SPI)

pte

Receive shift register

Transmit shift register

Clock generator

Receive shift register

Transmit shift register
MISO MISO

MOSI MOSI

SCK SCK

NSS CS
Slave selector

Master Slave

from STM32L4x6 advanced ARM®-based 32-bit MCUs reference manual: Figure 420 on page 1291

1 shift register?

FIFOs?

Data connected to
an internal bus?

CRC?

DMA? Speed?

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 529 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards (SPI)
Receive shift register

Transmit shift register

Clock generator

Receive shift register

Transmit shift register
MISO MISO

MOSI MOSI

SCK SCK

NSS CS
Slave selector

Master Slave

© 2020 U R Zi Th A t li N ti l U i it

Receive shift register

Transmit shift register

Clock generator

Receive shift register

Transmit shift register
MISO MISO

MOSI MOSI

SCK SCK

S1 CS
Slave selector

Master Slave 1

Receive shift register

Transmit shift register

Slave 2

Receive shift register

Transmit shift register

Slave 3

MISO

MOSI

SCK

CS

MISO

MOSI

SCK

CS

S2

S3

Full duplex with 1
out of x slaves

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 530 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards (SPI)
Receive shift register

Transmit shift register

Clock generator

Receive shift register

Transmit shift register
MISO MISO

MOSI MOSI

SCK SCK

NSS CS
Slave selector

Master Slave

© 2020 U R Zi Th A t li N ti l U i it

Receive shift register

Transmit shift register

Clock generator

Receive shift register

Transmit shift register
MISO MISO

MOSI MOSI

SCK SCK

S1 CS
Slave selector

Master Slave 1

Receive shift register

Transmit shift register

Slave 2

Receive shift register

Transmit shift register

Slave 3

MISO

MOSI

SCK

CS

MISO

MOSI

SCK

CS

S2

S3

Concurrent simplex
with y out of x slaves

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 531 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards (SPI)
Receive shift register

Transmit shift register

Clock generator

Receive shift register

Transmit shift register
MISO MISO

MOSI MOSI

SCK SCK

NSS CS
Slave selector

Master Slave

© 2020 U R Zi Th A t li N ti l U i it

Receive shift register

Transmit shift register

Clock generator

Receive shift register

Transmit shift register
MISO MISO

MOSI MOSI

SCK SCK

NSS CS
Slave selector

Master Slave 1

Receive shift register

Transmit shift register

Slave 2

Receive shift register

Transmit shift register

Slave 3

MISO

MOSI

SCK

CS

MISO

MOSI

SCK

CS

Concurrent
daisy chaining
with all slaves

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 532 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network

Physical

User data User data

OSI

Transport

Application

TCP/IP OSI

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 533 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Application

Presentation

Session

Transport

Network

Data link

Physical

AppleTalk Filing Protocol (AFP)

Routing Table
Maintenance Prot.

IP

Network

Physical

OSI

Transport

Application

TCP/IP AppleTalk

AT Update Based
Routing Protocol

AT Transaction
Protocol

Name
Binding Prot.

AT Echo
Protocol

AT Data Stream
Protocol

AT Session
Protocol

Zone Info
Protocol

Printer Access
Protocol

Datagram Delivery Protocol (DDP)

AppleTalk Address Resolution Protocol (AARP)

EtherTalk Link
Access Protocol

LocalTalk Link
Access Protocol

TokenTalk Link
Access Protocol

FDDITalk Link
Access Protocol

IEEE 802.3 LocalTalk Token Ring
IEEE 802.5 FDDI

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 534 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network

Physical

OSI AppleTalk over IP

EtherTalk Link
Access Protocol

LocalTalk Link
Access Protocol

TokenTalk Link
Access Protocol

FDDITalk Link
Access Protocol

IEEE 802.3 LocalTalk Token Ring
IEEE 802.5 FDDI

AppleTalk Filing Protocol (AFP)

Routing Table
Maintenance Prot.

AT Update Based Routing
Protocol

AT Transaction
Protocol

Name Binding
Protocol

AT Echo
Protocol

AT Data Stream Protocol AT Session Protocol Zone Info Protocol Printer Access Protocol

Datagram Delivery Protocol (DDP)

AppleTalk Address Resolution Protocol (AARP)

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 535 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Ethernet / IEEE 802.3

Local area network (LAN) developed by Xerox in the 70’s

• 10 Mbps specification 1.0 by DEC, Intel, & Xerox in 1980.

• First standard as IEEE 802.3 in 1983 (10 Mbps over thick co-ax cables).

• currently 1 Gbps (802.3ab) copper cable ports used in most desktops and laptops.

• currently standards up to 100 Gbps (IEEE 802.3ba 2010).

• more than 85 % of current LAN lines worldwide
(according to the International Data Corporation (IDC)).

 Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 536 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Ethernet / IEEE 802.3
OSI relation: PHY, MAC, MAC-client

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers
OSI

reference
model

Application

Presentation

Session

Transport

Network

Data link

Physical

IEEE 802.3
reference

model

MAC-client

Media Access (MAC)

Physical (PHY)

Upper-layer
protocols

IEEE 802-specific

IEEE 802.3-specific

Media-specific

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 537 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Ethernet / IEEE 802.3
OSI relation: PHY, MAC, MAC-client

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

802.3 MAC

Physical medium-
independent layer

MAC Client

MII

Physical medium-
dependent layers

MDI

802.3 MAC

Physical medium-
independent layer

MAC Client

MII

Physical medium-
dependent layers

MDI

PHY

Link media,
signal encoding, and

transmission rate

Transmission rate

MII = Medium-independent interface
MDI = Medium-dependent interface - the link connector

Link

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 538 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Ethernet / IEEE 802.11

Wireless local area network (WLAN) developed in the 90’s

• First standard as IEEE 802.11 in 1997 (1-2 Mbps over 2.4 GHz).

• Typical usage at 54 Mbps over 2.4 GHz carrier at 20 MHz bandwidth.

• Current standards up to 780 Mbps (802.11ac) over 5 GHz carrier at 160 MHz bandwidth.

• Future standards are designed for up to 100 Gbps over 60 GHz carrier.

• Direct relation to IEEE 802.3 and similar OSI layer association.

 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

 Direct-Sequence Spread Spectrum (DSSS)

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 539 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Bluetooth

Wireless local area network (WLAN) developed in the 90’s with different features than 802.11:

• Lower power consumption.

• Shorter ranges.

• Lower data rates (typically < 1 Mbps).

• Ad-hoc networking (no infrastructure required).

 Combinations of 802.11 and Bluetooth OSI layers
are possible to achieve the required features set.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 540 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Token Ring / IEEE 802.5 /
Fibre Distributed Data Interface (FDDI)

• “Token Ring “ developed by IBM in the 70’s

• IEEE 802.5 standard is modelled after the IBM Token Ring architecture
(specifi cations are slightly different, but basically compatible)

• IBM Token Ring requests are star topology as well as twisted pair cables,
while IEEE 802.5 is unspecified in topology and medium

• Fibre Distributed Data Interface combines a token ring architecture
with a dual-ring, fi bre-optical, physical network.

 Unlike CSMA/CD, Token ring is deterministic
(with respect to its timing behaviour)

 FDDI is deterministic and failure resistant

 None of the above is currently used in performance oriented applications.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 541 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Fibre Channel

• Developed in the late 80’s.

• ANSI standard since 1994.

• Current standards allow for 16 Gbps per link.

• Allows for three different topologies:

 Point-to-point: 2 addresses

 Arbitrated loop (similar to token ring): 127 addresses deterministic, real-time capable

 Switched fabric: 224 addresses, many topologies and concurrent data links possible

• Defi nes OSI equivalent layers up to the session level.

 Mostly used in storage arrays,
but applicable to super-computers and high integrity systems as well.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 542 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Fibre Channel
Mapping of Fibre Channel to OSI layers:

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Physical

User data User data

OSI TCP/IP OSI

IP

Physical

Application

FC/IP

FC-0

Application

FibreChannel

FC-4 FC-4
FC-3
FC-2

FC-3

FC-2

FC-1

TransportTransport

NetworkNetwork

Application

FC-3 Common service

FC-4 Protocol mapping

FC-2 Network

FC-0 Physical

FC-1 Data link

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 543 of 758 (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards

Infi niBand

• Developed in the late 90’s

• Defi ned by the Infi niBand Trade Association (IBTA) since 1999.

• Current standards allow for 25 Gbps per link.

• Switched fabric topologies.

• Concurrent data links possible (commonly up to 12 300 Gbps).

• Defi nes only the data-link layer and parts of the network layer.

• Existing devices use copper cables (instead of optical fi bres).

 Mostly used in super-computers and clusters but applicable to storage arrays as well.

 Cheaper than Ethernet or FibreChannel at high data-rates.

 Small packets (only up to 4 kB) and no session control.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 544 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distribution!

Motivation
Possibly …

 … fi ts an existing physical distribution (e-mail system, devices in a large craft, …).

 … high performance due to potentially high degree of parallel processing.

 … high reliability/integrity due to redundancy of hardware and software.

 … scalable.

 … integration of heterogeneous devices.

Different specifi cations will lead to substantially different distributed designs.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 545 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

What can be distributed?

• State Common operations on distributed data

• Function Distributed operations on central data

• State & Function Client/server clusters

• none of those Pure replication, redundancy

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 546 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Common design criteria

 Achieve De-coupling / high degree of local autonomy

 Cooperation rather than central control

 Consider Reliability

 Consider Scalability

 Consider Performance

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 547 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Some common phenomena in distributed systems

1. Unpredictable delays (communication)
 Are we done yet?

2. Missing or imprecise time-base
 Causal relation or temporal relation?

3. Partial failures
 Likelihood of individual failures increases

 Likelihood of complete failure decreases (in case of a good design)

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 548 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Time in distributed systems

Two alternative strategies:

Based on a shared time Synchronize clocks!

Based on sequence of events Create a virtual time!

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 549 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

‘Real-time’ clocks
are:

• discrete – i.e. time is not dense and there is a minimal granularity

• drift affected:

Maximal clock drift d defi ned as:

() ()C t C t-
1 11

2 1
2 1# #d d+ +-
t t-^ ^h h

often specifi ed as PPM (Parts-Per-Million)
(typical 20. PPM in computer applications)

© 2020 Uwe R Zimmer The Australian National Universi

t 'real-time'1

1

ideal clock

d

C 'measured time'

1-(1+d)-1

real clock

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 550 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Synchronize a ‘real-time’ clock (bi-directional)

Resetting the clock drift by regular reference time re-synchronization:

Maximal clock drift d defi ned as:

() ()C t C t-
1 11

2 1
2 1# #d d+ +-
t t-^ ^h h

‘real-time’ clock is adjusted
forwards & backwards

 Calendar time
t 'real-time'

C 'measured time'

sync.sync.sync.

ref.
time

ref.
time

ref.
time

real clock

ideal
clock

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 551 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Synchronize a ‘real-time’ clock (forward only)

Resetting the clock drift by regular reference time re-synchronization:

Maximal clock drift d defi ned as:

() ()C t C t-
1 11

2 1
2 1# #d+ -
t t-^ h

‘real-time’ clock is adjusted
forwards only

 Monotonic time
t 'real-time'

C 'measured time'

sync.sync.sync.

ref.
time

ref.
time

ref.
time

ideal
clock

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 552 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed critical regions with synchronized clocks
• 6 times:
6 received Requests: Add to local RequestQueue (ordered by time)
6 received Release messages:
 Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
Add OwnRequest to local RequestQueue (ordered by time).
Send OwnRequest to all processes.

2. Delay by L2 (L being the time it takes for a message to reach all network nodes)

3. While Top (RequestQueue) ≠ OwnRequest: delay until new message

4. Enter and leave critical region

5. Send Release-message to all processes.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 553 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed critical regions with synchronized clocks

Analysis
• No deadlock, no individual starvation, no livelock.

• Minimal request delay: L2 .

• Minimal release delay: L.

• Communications requirements per request: N2 1-^ h messages
(can be signifi cantly improved by employing broadcast mechanisms).

• Clock drifts affect fairness, but not integrity of the critical region.

Assumptions:
• L is known and constant violation leads to loss of mutual exclusion.

• No messages are lost violation leads to loss of mutual exclusion.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 554 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Virtual (logical) time [Lamport 1978]

() ()a b C a C b<" &

with a b" being a causal relation between a and b,
and ()C a , ()C b are the (virtual) times associated with a and b

a b" iff:
• a happens earlier than b in the same sequential control-fl ow or

• a denotes the sending event of message m,
while b denotes the receiving event of the same message m or

• there is a transitive causal relation between a and b: a e e bn1" " " "f

Notion of concurrency:

a b a b b a& " "/J Jz ^ ^h h

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 555 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Virtual (logical) time

() ()a b C a C b<" &

Implications:

() () ?C a C b< &

() () ?C a C b &=

() () () ?C a C b C c< &=

() () () ?C a C b C c< < &

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 556 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Virtual (logical) time

() ()a b C a C b<" &

Implications:

() () ()C a C b b a< & "J

() ()C a C b a b& z=

() () () ?C a C b C c< &=

() () () ?C a C b C c< < &

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 557 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Virtual (logical) time

() ()a b C a C b<" &

Implications:

() () () () ()C a C b b a a b a b< & " " 0J z=

() ()C a C b a b a b b a& " "/J Jz= = ^ ^h h

() () () ?C a C b C c< &=

() () () ?C a C b C c< < &

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 558 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Virtual (logical) time

() ()a b C a C b<" &

Implications:

() () () () ()C a C b b a a b a b< & " " 0J z=

() ()C a C b a b a b b a& " "/J Jz= = ^ ^h h

() () ()C a C b C c c a< & "J= ^ h

() () ()C a C b C c c a< < & "J^ h

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 559 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Virtual (logical) time

() ()a b C a C b<" &

Implications:

() () () () ()C a C b b a a b a b< & " " 0J z=

() ()C a C b a b a b b a& " "/J Jz= = ^ ^h h

() () () () ()C a C b C c c a a c a c< & " " 0J z= =^ h

() () () () ()C a C b C c c a a c a c< < & " " 0J z=^ h

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 560 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Virtual (logical) time

Time as derived from causal relations:

25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

P3

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

Message

20 22

26

22 2333 24

2227

4

3027

24

29

2222225

8

2222222222222222222222222229999999999999999999999

22222222222222222225

9

26 2222222222227777777777777777777777777 30

3

26 22222227777777777777

0

2 333333

31

36

3631

3 3333333333 3

35

35

333837

33

3333333333433

3535

44433333334444 35

 Events in concurrent control fl ows are not ordered.

 No global order of time.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 561 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Implementing a virtual (logical) time

1. :P C 0i i6 =

2. :Pi6

6 local events: C C 1i i= + ;
6 send events: C C 1i i= + ; Send (message, Ci);
6 receive events: Receive (message, Cm); (,)maxC C C 1i i m= + ;

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 562 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed critical regions with logical clocks
• 6 times: 6 received Requests:

 Add to local RequestQueue (ordered by time)
 Reply with Acknowledge or OwnRequest

• 6 times: 6 received Release messages:
 Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
 Add OwnRequest to local RequestQueue (ordered by time).
 Send OwnRequest to all processes.

2. Wait for Top (RequestQueue) = OwnRequest & no outstanding replies
3. Enter and leave critical region
4. Send Release-message to all processes.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 563 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed critical regions with logical clocks

Analysis
• No deadlock, no individual starvation, no livelock.

• Minimal request delay: N 1- requests (1 broadcast) + N 1- replies.

• Minimal release delay: N 1- release messages (or 1 broadcast).

• Communications requirements per request: N3 1-^ h messages
(or N 1- messages + 2 broadcasts).

• Clocks are kept recent by the exchanged messages themselves.

Assumptions:
• No messages are lost violation leads to stall.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 564 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed critical regions with a token ring structure

1. Organize all processes in a logical or physical ring topology

2. Send one token message to one process

3. 6 times, 6processes: On receiving the token message:
1. If required the process
 enters and leaves a critical section (while holding the token).
2. The token is passed along to the next process in the ring.

Assumptions:
• Token is not lost violation leads to stall.

(a lost token can be recovered by a number of means – e.g. the ‘election’ scheme following)

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 565 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed critical regions with a central coordinator

A global, static, central coordinator
 Invalidates the idea of a distributed system

 Enables a very simple mutual exclusion scheme

Therefore:

• A global, central coordinator is employed in some systems … yet …

• … if it fails, a system to come up with a new coordinator is provided.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 566 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Electing a central coordinator (the Bully algorithm)
Any process P which notices that the central coordinator is gone, performs:

1. P sends an Election-message
to all processes with higher process numbers.

2. P waits for response messages.
 If no one responds after a pre-defined amount of time:
P declares itself the new coordinator and sends out a Coordinator-message to all.

 If any process responds,
then the election activity for P is over and P waits for a Coordinator-message

All processes Pi perform at all times:

• If Pi receives a Election-message from a process with
a lower process number, it responds to the originating process
and starts an election process itself (if not running already).

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 567 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states
 How to read the current state of a distributed system?

25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

P3

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

Message

20 22

26

22 23333 24

227

330

4

27

24

29

22222225

8

22222222222222222222222222229999999999999999999999999

2222222222222222225

9

26 22222222222277777777777777777777777 30

3

26 222222227777777777

0

2 33333333

31

36

31

3 33333333333

3635

3

35

333837

33

333333333433

3535

44433333334444 35

This “god’s eye view” does in fact not exist.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 568 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states
 How to read the current state of a distributed system?

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

22

26

22 23333 24

227

330

4

27

24

22222222222222222222222222229999999999999999999999999

29

22222225

8

2222222222222222225

9

26 2222222222227777777777777777777777726 222222227777777777

6 333837

P0

P3 25

21

2

P1

P2 20

44444440363322 33333333 33333333333

33

44433333334444 333333555553

3030

3130

3

3

333

333333333333333333333333

31333333131303033

12

36

35 36

39

3333333333333333333333333333337777777777777777 3

6

36

35

3837

33

333333333333333333333333333344444444444444444444444444 333337

44444440

88388888

36

5

3

55

3

353535

Instead: some entity probes and collects local states.
 What state of the global system has been accumulated?

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 569 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states
 How to read the current state of a distributed system?

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

20 22

26

22 23333 24

227

330

4

27

24

22222222222222222222222222229999999999999999999999999

29

22222225

8

2222222222222222225

9

26 22222222222277777777777777777777777

3

26 222222227777777777

0

2 33333333

31

36

3631

3 3

35

3

35

333837

33

333333333433

3535

4344 35

P0

3

3

30

3

3

3333337

44444440

38888888888

12

3311

3333333333333 33554444333333344444 3

Instead: some entity probes and collects local states.
 What state of the global system has been accumulated?

 Connecting all the states to a global state.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 570 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states

A consistent global state (snapshot) is defi ne by a unique division into:

• “The Past” P (events before the snapshot):
() ()e P e e e P2 1 2 1" &/! !

• “The Future” F (events after the snapshot):
() ()e F e e e F1 1 2 2" &/! !

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 571 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states
 How to read the current state of a distributed system?

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

20 22

26

22 23333 24

227

330

4

27

24

22222222222222222222222222229999999999999999999999999

29

22222225

8

2222222222222222225

09

26 2222222222227777777777777777777777726 222222227777777777

0

2 333 33333333333333333333333344444444444444444444

31

37

31 35

44444444

3333333333333333333 35

3338

35

34

6

333333

363333333333333333333333333335555555555555555

33

P0

32

30

30

30

12

3333337

44444440

38888888888

Instead: some entity probes and collects local states.
 What state of the global system has been accumulated?

 Sorting the events into past and future events.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 572 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states
 How to read the current state of a distributed system?

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

20 22

26

22 2333 24

2227

330

4

27

24

22222222222222222222222222229999999999999999999999999

29

222222225

8

2222222222222222225

09

26 2222222222227777777777777777777777777726 22222227777777777

0

2 33 333333333333333333333333344444444444444444444

31

37

31 35

444444444

35

3338

35

34

636

333

333333333333333333333333355555555555555555

P0

32

30

30

30

12

3333337

444444440

3888888888

Instead: some entity probes and collects local states.
 What state of the global system has been accumulated?

 Event in the past receives a message from the future!
Division not possible Snapshot inconsistent!

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 573 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Snapshot algorithm

• Observer-process P0 (any process) creates a snapshot token ts and saves its local state s0.

• P0 sends ts to all other processes.

• Pi6 which receive ts (as an individual token-message, or as part of another message):

• Save local state si and send si to P0.

• Attach ts to all further messages, which are to be sent to other processes.

• Save ts and ignore all further incoming ts‘s.

• Pi6 which previously received ts and receive a message m without ts:

• Forward m to P0 (this message belongs to the snapshot).

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 574 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

22

26

22 233 24

27

330

4

27

24

222222299999999

222225

8

22222222222222222222222222222229999999999999999999999999

222222222222222225

9

26 22222222222277777777777777777777777

3

26 222222227777777777

0

0

2 33333333

31

36

3631

3 33333333333 3

35

35

333837

22

21

220

33

333333333433

3535P1

P2

P1

44433333334444 35

P0

3

30

3 31

0

P3

0

303033

12

• Observer-process P0 (any process) creates a snapshot token ts and saves its local state s0.

• P0 sends ts to all other processes.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 575 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

22

26

22 233 24

227

4

3027

224

29

222225

8

2222222222222222222222222299999999999999999999999

22222222222222222225

9

26 2222222222222777777777777777777777726 2222222777777777777777

2 333333 36

6

3 33333333333 3

35

33837

33

4443333333344444 35

P0

3

220

3030

3130

3

33

313131

P0

21

220

P1

P2

36365555 33

3333333333334

55553333333335555533333333333333333355555553333333335303033

12

• Pi6 which receive ts (as an individual token-message, or as part of another message):

• Save local state si and send si to P0.

• Attach ts to all further messages, which are to be sent to other processes.

• Save ts and ignore all further incoming ts‘s.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 576 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

22

26

22 233 24

27

330

4

27

24

22222222222222222222222222229999999999999999999999999

29

22222225

8

2222222222222222225

9

26 2222222222227777777777777777777777726 222222227777777777

2 33333333 36

6

3 33333333333 3

35

333837

33

44433333334444 35

P0

3

220

3030

3130

3

33

313131

P0

21

220

P1

P2

3636555 33

3333333334

555533333333335555555333333333333333333335555555533333333335303033

12

• Pi6 which previously received ts and receive a message m without ts:

• Forward m to P0 (this message belongs to the snapshot).

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 577 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

20 22

26

22 23333 24

227

4

33027

24

P3

P1

P2

29

22222225

8

22222222222222222222222222229999999999999999999999999

2222222222222222225

9

26 2222222222227777777777777777777777726 222222227777777777

2 33333333

0 5

363 33333333333 3 333837

33

44433333334444 5

P0

3

P0

3030

3130

3

33

3131

35 36

39

7 3

363

35

338375

31

P

3333333334

555555533333333335555555333333333333333333335555555533333333335 666666666 36666666666666666666666666666666666633333333333333666666666666666666666666666333333333333333333633

33333333333333333

303033

12

• Pi6 which receive ts (as an individual token-message, or as part of another message):

• Save local state si and send si to P0.

• Attach ts to all further messages, which are to be sent to other processes.

• Save ts and ignore all further incoming ts‘s.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 578 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

0

24

330

4

27

24

29

22222225

8

22222222222222222222222222229999999999999999999999999

2222222222222222225

9

26 222222222222222777777777777777777777777726 2222222222222777777777777777

P 25

2P2

P3

20 22

26

22 23333

6 333837

P0

35 36

39

7 3

6

35

33837

3333333334

666666666 366666666666666666666666666666666666333333333333336666666666666666666666666663333333333333333336332822721P1

P00

3635 336355555 3322 33333333 33333333333

33

444333333344443

3030

3130

3

333333333333333333333333

31333333131 555555533333333335555555333333333333333333335555555533333333335

333333333333333333333

303033

12

• Save ts and ignore all further incoming ts‘s.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 579 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

20 22

6

22

P1

233 24

27

25

5

26 330

4

27

24

29

22222225

8

22222222222222222222222222229999999999999999999999999

2222222222222222225

9

26 222222222222222777777777777777777777777726 2222222222222777777777777777

6

P1

333837

P0

PP

P

35 36

396

35

33837

3333337

44444440

3333333334

P3 2

1

P2

P

P

PP

6633333333333333666666666666666666666666666333333333333333333633

0

37 3888388888333333333333

3635 336355555 3322 33333333 33333333333

33

444333333344443

3030

3130

3

333333333333333333333333

31333333131 555555533333333335555555333333333333333333335555555533333333335

333333333333333333333

303033

12

• Finalize snapshot

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 580 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

26

233 24

27

330

4

27

24

29

22222225

8

22222222222222222222222222229999999999999999999999999

2222222222222222225

9

26 2222222222227777777777777777777777726 222222227777777777

6 333837

P0

1

220 2222

1

35 36

396

35

33837

3333337

44444440P3

P2 3333333334

P

66333333333333336666666666666666666666666663333333333333333336332P1

P0

37 338888888333333333333

3635 336355555 3322 33333333 33333333333

33

444333333344443

3030

3130

3

333333333333333333333333

31333333131 555555533333333335555555333333333333333333335555555533333333335

3333333333333333333333

0

303033

12

 Sorting the events into past and future events.

 Past and future events uniquely separated Consistent state

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 581 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Snapshot algorithm

Termination condition?

Either

• Make assumptions about the communication delays in the system.

or

• Count the sent and received messages for each process (include this in the lo-
cal state) and keep track of outstanding messages in the observer process.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 582 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Consistent distributed states
Why would we need that?

• Find deadlocks.

• Find termination / completion conditions.

• … any other global safety of liveness property.

• Collect a consistent system state for system backup/restore.

• Collect a consistent system state for further pro-
cessing (e.g. distributed databases).

• …

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 583 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

A distributed server (load balancing)

ServerClient ServerClient

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 584 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

A distributed server (load balancing)

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client Ring of servers

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client Ring of servers

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 585 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

A distributed server (load balancing)

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Send_To_Group (Job) Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Send_To_Group (JTT ob)

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 586 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

A distributed server (load balancing)

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client Contention
messages

Server

erver

Server

Server

Server erver

ver

Server

Serve

Server

errrr SSSSSS

verServ

rver

Se

errrrr

r Se

SSSSSServ

Server

rver

Client Contention
messages

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 587 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

A distributed server (load balancing)

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Job_Completed (Results)

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Job_Completed (Results)

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 588 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

A distributed server (load balancing)
with Ada.Task_Identification; use Ada.Task_Identification;

task type Print_Server is

 entry Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean);
 entry Contention (Print_Job : in Job_Type; Server_Id : in Task_Id);

end Print_Server;

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 589 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

A distributed server (load balancing)
task body Print_Server is
 begin
 loop
 select

 accept Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean) do

 if not Print_Job in Turned_Down_Jobs then

 if Not_Too_Busy then
 Applied_For_Jobs := Applied_For_Jobs + Print_Job;
 Next_Server_On_Ring.Contention (Print_Job, Current_Task);
 requeue Internal_Print_Server.Print_Job_Queue;

 else
 Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
 end if;

 end if;
 end Send_To_Server;

(...)

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 590 of 758 (chapter 8: “Distributed Systems” up to page 641)

 or
 accept Contention (Print_Job : in Job_Type; Server_Id : in Task_Id) do
 if Print_Job in AppliedForJobs then
 if Server_Id = Current_Task then
 Internal_Print_Server.Start_Print (Print_Job);
 elsif Server_Id > Current_Task then
 Internal_Print_Server.Cancel_Print (Print_Job);
 Next_Server_On_Ring.Contention (Print_Job; Server_Id);
 else
 null; -- removing the contention message from ring
 end if;
 else
 Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
 Next_Server_On_Ring.Contention (Print_Job; Server_Id);
 end if;
 end Contention;
 or
 terminate;
 end select;
 end loop;
 end Print_Server;

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 591 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Transactions

 Concurrency and distribution in systems
with multiple, interdependent interactions?

 Concurrent and distributed
client/server interactions

beyond single remote procedure calls?

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 592 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Transactions
Defi nition (ACID properties):

• Atomicity: All or none of the sub-operations are performed.
Atomicity helps achieve crash resilience. If a crash occurs, then it is possible
to roll back the system to the state before the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another consistent state.

• Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. If the operation accesses a shared data object,
invocation does not interfere with other operations on the same object.

• Durability: After a commit, results are guaranteed to persist,
even after a subsequent system failure.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 593 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Transactions
Defi nition (ACID properties):

• Atomicity: All or none of the sub-operations are performed.
Atomicity helps achieve crash resilience. If a crash occurs, then it is possible
to roll back the system to the state before the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another consistent state.

• Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. If the operation accesses a shared data object,
invocation does not interfere with other operations on the same object.

• Durability: After a commit, results are guaranteed to persist,
even after a subsequent system failure.

iiss possibleiiii p iiiibbbblll

How to ensure consistency

in a distributed system?

Actual isolation and

effi cient concurrency?

Shadow copies?

Actual isolation or the
appearance of isolation?

sub operations are performedsub operatiions are ppeerrffffffffffffffoorrmmmmeeeeddddddddddddddddddddd

Atomic operations
spanning multiple processes?

What hardware do we

need to assume?

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 594 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Transactions

A closer look inside transactions:

• Transactions consist of a sequence of operations.

• If two operations out of two transactions can be performed in any order with the
same fi nal effect, they are commutative and not critical for our purposes.

• Idempotent and side-effect free operations are by defi nition commutative.

• All non-commutative operations are considered critical operations.

• Two critical operations as part of two different transactions while
affecting the same object are called a confl icting pair of operations.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 595 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Transactions

A closer look at multiple transactions:

• Any sequential execution of multiple transactions
will fulfi l the ACID-properties, by defi nition of a single transaction.

• A concurrent execution (or ‘interleavings’) of multiple transactions
might fulfi l the ACID-properties.

 If a specifi c concurrent execution can be shown to be equivalent to a specifi c sequential
execution of the involved transactions then this specifi c interleaving is called ‘serializable’.

 If a concurrent execution (‘interleaving’) ensures that no transaction ever encounters
an inconsistent state then it is said to ensure the appearance of isolation.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 596 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Achieving serializability

 For the serializability of two transactions it is necessary and suffi cient
for the order of their invocations

of all confl icting pairs of operations to be the same
for all the objects which are invoked by both transactions.

(Determining order in distributed systems requires logical clocks.)

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 597 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Order

Re W

• Two confl icting pairs of operations with the same order of execution.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 598 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Write (B)

ead ((((((((AAAAAAAAAAAAAAA))))))))))))))))) WR

P1 P2

 Serializable

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 599 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A) Write (B)P2

P3

Write (B)

Order

Re

W

P1 P2

• Two confl icting pairs of operations with different orders of executions.

 Not serializable.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 600 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

Re

Re

W

• Three confl icting pairs of operations with the same order of execution
(pair-wise between processes).

• The order between processes also leads to a global order of processes.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 601 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

Write (B)eeeeaad (((C)Write (A) RRRRRRe

eadddddd (((((((((((((((((AAAAAAAAAAAAAAAAAAAAAAAA)))))))))))))))))))) WR

P1 P2P3

• Three confl icting pairs of operations with the same order of execution
(pair-wise between processes).

• The order between processes also leads to a global order of processes.

 Serializable

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 602 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

Re

Re

W

• Three confl icting pairs of operations with the same order of execution
(pair-wise between processes).

• The order between processes also leads to a global order of processes.

 Serializable

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 603 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)

Read (C)

P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

R

W

eaRe

Re

W

P1 P2 P3

• Three confl icting pairs of operations with the same order of execution
(pair-wise between processes).

• The order between processes does no longer lead to a global order of processes.

 Not serializable

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 604 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Achieving serializability
 For the serializability of two transactions it is necessary and suffi cient

for the order of their invocations
of all confl icting pairs of operations to be the same

for all the objects which are invoked by both transactions.

• Defi ne: Serialization graph: A directed graph;
Vertices i represent transactions Ti;
Edges T Ti j" represent an established global order dependency
 between all confl icting pairs of operations of those two transactions.

 For the serializability of multiple transactions it is
necessary and suffi cient

that the serialization graph is acyclic.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 605 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

Write (B)eeeeaad (((C)Write (A) RRRRRRe

eadddddd (((((((((((((((((AAAAAAAAAAAAAAAAAAAAAAAA)))))))))))))))))))) WR

P1 P2P3

• Three confl icting pairs of operations with the same order of execution
(pair-wise between processes).

 Serialization graph is acyclic.

 Serializable

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 606 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)

Read (C)

P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

R

W

eaRe

Re

W

P1 P2 P3

• Three confl icting pairs of operations with the same order of execution
(pair-wise between processes).

 Serialization graph is cyclic.

 Not serializable

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 607 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Transaction schedulers

Three major designs:

• Locking methods:
Impose strict mutual exclusion on all critical sections.

• Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

• “Optimistic” methods:
Go ahead until a confl ict is observed – then roll back.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 608 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Transaction schedulers – Locking methods
Locking methods include the possibility of deadlocks careful from here on out …

• Complete resource allocation before the start and release at the end of every transaction:

 This will impose a strict sequential execution of all critical transactions.

• (Strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation:

• Growing phase: locks can be acquired, but not released.

• Shrinking phase: locks can be released anytime, but not acquired (two phase locking)
or locks are released on commit only (strict two phase locking).

 Possible deadlocks

 Serializable interleavings

 Strict isolation (in case of strict two-phase locking)

• Semantic locking: Allow for separate read-only and write-locks

 Higher level of concurrency (see also: use of functions in protected objects)

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 609 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Transaction schedulers – Time stamp ordering
Add a unique time-stamp (any global order criterion) on every transaction upon start.
Each involved object can inspect the time-stamps of all requesting transactions.

• Case 1: A transaction with a time-stamp later than all currently active transactions applies:
 the request is accepted and the transaction can go ahead.

• Alternative case 1 (strict time-stamp ordering):
 the request is delayed until the currently active earlier transaction has committed.

• Case 2: A transaction with a time-stamp earlier than all currently active transactions applies:
 the request is not accepted and the applying transaction is to be aborted.

 Collision detection rather than collision avoidance
 No isolation Cascading aborts possible.

 Simple implementation, high degree of concurrency
– also in a distributed environment, as long as a global event order (time) can be supplied.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 610 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Transaction schedulers – Optimistic control

Three sequential phases:

1. Read & execute:
Create a shadow copy of all involved objects and
perform all required operations on the shadow copy and locally (i.e. in isolation).

2. Validate:
After local commit, check all occurred interleavings for serializability.

3. Update or abort:

3a. If serializability could be ensured in step 2 then all results of involved transactions
are written to all involved objects – in dependency order of the transactions.

3b. Otherwise: destroy shadow copies and start over with the failed transactions.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 611 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Transaction schedulers – Optimistic control

Three sequential phases:

1. Read & execute:
Create a shadow copy of all involved objects and
perform all required operations on the shadow copy and locally (i.e. in isolation).

2. Validate:
After local commit, check all occurred interleavings for serializability.

3. Update or abort:

3a. If serializability could be ensured in step 2 then all results of involved transactions
are written to all involved objects – in dependency order of the transactions.

3b. Otherwise: destroy shadow copies and start over with the failed transactions.

How to create a consistent copy?

 rrrrrrrrrrreeeeeeeeeeeeeeeeeeeeeessssssssssssssssssuuuuuuuuuuuuuuuuuuulllllllllllllllltttttttttttttttttttsssssssssssssssss oooooooooooooooooooooofffffffffffffffffff iiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnvvvvvvvvvvvvvvvvvvvoooooooooooooooollllllllllllllllllvvvvvvvvvvvvvvvvvvveeeeeeeeeeeeeeedddddddddddddddddddd ttttttttttttttttrrrrrrrrrrrrrrraaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnssssssssssssssaaaaaaaaaaaaaaaacccccccccccccccccttttttttttttiiiiiiiiiiiiooooooooooooooooonnnnnnnnnnnnssssssssssssss l f i l d t ti
How to update all objects consistently?

((iiiiiiiiii e iiiiiiiiinn iiiiiissoolllllllllattttiiiiiion)))))))

Full isolation and
maximal concurrency!

Aborts happen after everything
has been committed locally.

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 612 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed transaction schedulers
Three major designs:

• Locking methods: no aborts
Impose strict mutual exclusion on all critical sections.

• Time-stamp ordering: potential aborts along the way
Note relative starting times and keep order dependencies consistent.

• “Optimistic” methods: aborts or commits at the very end
Go ahead until a confl ict is observed – then roll back.

 How to implement “commit” and “abort” operations
in a distributed environment?

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 613 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
Start up (initialization) phase

0 Uwe R. Zimmer, The Australian National University page 613 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

ver

rver

rver

ver

rver

Ring of servers

Data

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 614 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
Start up (initialization) phase

0 Uwe R. Zimmer, The Australian National University page 614 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

erver

Server Server

erver

erver

ver

Client

See e SerSe

ServerSe
Se

Se

Se

rver SSSSSSSSSServSe

rverSer

ererveSSe

ver

verrv

rver

erve

rver

Distributed
Transaction

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 615 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
Start up (initialization) phase

0 Uwe R. Zimmer, The Australian National University page 615 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

ver

rver

rver

ver

rver

Determine
coordinator

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 616 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
Start up (initialization) phase

0 Uwe R. Zimmer, The Australian National University page 616 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Determine
coordinator

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 617 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
Start up (initialization) phase

0 Uwe R. Zimmer, The Australian National University page 617 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Setup & Start
operations

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 618 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
Start up (initialization) phase

0 Uwe R. Zimmer, The Australian National University page 618 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Setup & Start
operations

Shadow
copy

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 619 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
Phase 1: Determine result state

0 Uwe R. Zimmer, The Australian National University page 619 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Coordinator requests
and assembles votes:
"Commit" or "Abort"

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 620 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
Phase 2: Implement results

0 Uwe R. Zimmer, The Australian National University page 620 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Coordinator instructs
everybody to "Commit"

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 621 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
Phase 2: Implement results

0 Uwe R. Zimmer, The Australian National University page 621 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Everybody commits

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 622 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
Phase 2: Implement results

0 Uwe R. Zimmer, The Australian National University page 622 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Everybody destroys
shadows

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 623 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
Phase 2: Implement results

0 Uwe R. Zimmer, The Australian National University page 623 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Everybody reports
"Committed"

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 624 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
or Phase 2: Global roll back

0 Uwe R. Zimmer, The Australian National University page 624 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Coordinator instructs
everybody to "Abort"

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 625 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
or Phase 2: Global roll back

0 Uwe R. Zimmer, The Australian National University page 625 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Everybody destroys
shadows

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 626 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Two phase commit protocol
Phase 2: Report result of distributed transaction

0 Uwe R. Zimmer, The Australian National University page 626 of y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Clien

Coord.

ver

rver

rver

Server

Server

ntttt

C

ver

rverCoordinator reports to client:
"Committed" or "Aborted"

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 627 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed transaction schedulers
Evaluating the three major design methods in a distributed environment:

• Locking methods: No aborts.
Large overheads; Deadlock detection/prevention required.

• Time-stamp ordering: Potential aborts along the way.
Recommends itself for distributed applications, since decisions
are taken locally and communication overhead is relatively small.

• “Optimistic” methods: Aborts or commits at the very end.
Maximizes concurrency, but also data replication.

 Side-aspect “data replication”: large body of literature on this topic
(see: distributed data-bases / operating systems / shared memory / cache management, …)

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 628 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)
Premise:

A crashing server computer should not compromise the functionality of the system
(full fault tolerance)

Assumptions & Means:

• k computers inside the server cluster might crash without losing functionality.

 Replication: at least k 1+ servers.

• The server cluster can reorganize any time (and specifi cally after the loss of a computer).

 Hot stand-by components, dynamic server group management.

• The server is described fully by the current state and the sequence of messages received.

 State machines: we have to implement consistent state adjustments (re-organization)
and consistent message passing (order needs to be preserved).

[Schneider1990]

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 629 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)

Stages of each server:

Job message received by all active servers

Job processed locally
Job message received locally

Received Deliverable

Processed

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 630 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)
Start-up (initialization) phase

0 Uwe R. Zimmer, The Australian National University page 630 of y 758 (chapter 8: “Distributed Systems” up to page8

Start up (initialization) phase

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client Ring of identical
servers

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 631 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)
Start-up (initialization) phase

0 Uwe R. Zimmer, The Australian National University page 631 of y 758 (chapter 8: “Distributed Systems” up to page8

Start up (initialization) phase

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client Determine
coordinator

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 632 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)
Start-up (initialization) phase

0 Uwe R. Zimmer, The Australian National University page 632 of y 758 (chapter 8: “Distributed Systems” up to page8

Start up (initialization) phase

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

Coordinator
determined

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 633 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)
Coordinator receives job message

0 Uwe R. Zimmer, The Australian National University page 633 of y 758 (chapter 8: “Distributed Systems” up to page8

Coordinator receives job message

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

Server

Server

ntttt

C

Send Job

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 634 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)
Distribute job

0 Uwe R. Zimmer, The Australian National University page 634 of y 758 (chapter 8: “Distributed Systems” up to page8

Distribute job

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

Coordinator sends
job both ways

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 635 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)
Distribute job

0 Uwe R. Zimmer, The Australian National University page 635 of y 758 (chapter 8: “Distributed Systems” up to page8

Distribute job

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

Everybody received job
(but nobody
knows that)

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 636 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)
Processing starts

0 Uwe R. Zimmer, The Australian National University page 636 of y 758 (chapter 8: “Distributed Systems” up to page8

Processing starts

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

First server detects
two job-messages
☞ processes job

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 637 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)
Everybody (besides coordinator) processes

0 Uwe R. Zimmer, The Australian National University page 637 of y 758 (chapter 8: “Distributed Systems” up to page8

Everybody (besides coordinator) processes

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

All server detect
two job-messages

☞ everybody
processes job

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 638 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)
Coordinator processes

0 Uwe R. Zimmer, The Australian National University page 638 of y 758 (chapter 8: “Distributed Systems” up to page8

Coordinator processes

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

Coordinator also
received two messages

and processes job

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 639 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)
Result delivery

0 Uwe R. Zimmer, The Australian National University page 639 of y 758 (chapter 8: “Distributed Systems” up to page8

Result delivery

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

Server

Server

ntttt

C

Coordinator delivers
his local result

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 640 of 758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)

Event: Server crash, new servers joining, or current servers leaving.

 Server re-confi guration is triggered by a message to all
(this is assumed to be supported by the distributed operating system).

Each server on reception of a re-confi guration message:

1. Wait for local job to complete or time-out.

2. Store local consistent state Si.

3. Re-organize server ring, send local state around the ring.

4. If a state Sj with j i> is received then S Si j%

5. Elect coordinator

6. Enter ‘Coordinator-’ or ‘Replicate-mode’

Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 641 of 758 (chapter 8: “Distributed Systems” up to page 641)

Summary

Distributed Systems

• Networks
• OSI, topologies

• Practical network standards

• Time
• Synchronized clocks, virtual (logical) times

• Distributed critical regions (synchronized, logical, token ring)

• Distributed systems
• Elections

• Distributed states, consistent snapshots

• Distributed servers (replicates, distributed processing, distributed commits)

• Transactions (ACID properties, serializable interleavings, transaction schedulers)

