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Network protocols & standards

OSI network reference model

Standardized as the
Open Systems Interconnection (OSI) reference model by the 

International Standardization Organization (ISO) in 1977

• 7 layer architecture

• Connection oriented

Hardy implemented anywhere in full … 

…but its concepts and terminology are widely used, 
when describing existing and designing new protocols …
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Network protocols & standards
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Network protocols & standards

1: Physical Layer

• Service: Transmission of a raw bit stream 
over a communication channel

• Functions: Conversion of bits into electrical or optical signals

• Examples: X.21, Ethernet (cable, detectors & amplifi ers)
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Network protocols & standards

2: Data Link Layer

• Service: Reliable transfer of frames over a link

• Functions: Synchronization, error correction, flow control

• Examples: HDLC (high level data link control protocol), 
LAP-B (link access procedure, balanced), 
LAP-D (link access procedure, D-channel), 
LLC (link level control), …
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Network protocols & standards

3: Network Layer

• Service: Transfer of packets inside the network

• Functions: Routing, addressing, switching, congestion control

• Examples: IP, X.25
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Network protocols & standards

4: Transport Layer

• Service: Transfer of data between hosts

• Functions: Connection establishment, management, 
termination, flow-control, multiplexing, error detection

• Examples: TCP, UDP, ISO TP0-TP4
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Network protocols & standards

5: Session Layer

• Service: Coordination of the dialogue between application programs

• Functions: Session establishment, management, termination

• Examples: RPC
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Network protocols & standards

6: Presentation Layer

• Service: Provision of platform independent coding and encryption

• Functions: Code conversion, encryption, virtual devices

• Examples: ISO code conversion, PGP encryption
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Network protocols & standards

7: Application Layer

• Service: Network access for application programs

• Functions: Application/OS specific

• Examples: APIs for mail, ftp, ssh, scp, discovery protocols …
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Network protocols & standards

Serial Peripheral Interface (SPI)

 Used by gazillions of devices … and 
it’s not even a formal standard!

 Speed only limited by what 
both sides can survive.

 Usually push-pull drivers, 
i.e. fast and reliable, yet not friendly to wrong 
wiring/programming.

1.8” COLOR TFT LCD display from Adafruit SanDisk marketing photo
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Network protocols & standards

Serial Peripheral Interface (SPI)
Full Duplex, 4-wire, fl exible clock rate

Receive shift register

Transmit shift register

Clock generator

Receive shift register

Transmit shift register
MISO MISO
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Slave selector
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Network protocols & standards

Serial Peripheral Interface (SPI)
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Clock phase and 
polarity need to 
be agreed upon



Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 528 of  758  (chapter 8: “Distributed Systems” up to page 641)

Network protocols & standards (SPI)

Serial Peripheral Interface (SPI)

pte

Receive shift register

Transmit shift register

Clock generator

Receive shift register

Transmit shift register
MISO MISO

MOSI MOSI

SCK SCK

NSS CS
Slave selector

Master Slave

from STM32L4x6 advanced ARM®-based 32-bit MCUs reference manual: Figure 420 on page 1291

1 shift register?

FIFOs?

Data connected to 
an internal bus?

CRC?

DMA? Speed?
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Network protocols & standards (SPI)
Receive shift register

Transmit shift register

Clock generator
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Network protocols & standards (SPI)
Receive shift register

Transmit shift register

Clock generator

Receive shift register

Transmit shift register
MISO MISO
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NSS CS
Slave selector

Master Slave
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Network protocols & standards (SPI)
Receive shift register
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Network protocols & standards
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Network protocols & standards
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Network protocols & standards
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Network protocols & standards

Ethernet / IEEE 802.3 

Local area network (LAN) developed by Xerox in the 70’s

• 10 Mbps specification 1.0 by DEC, Intel, & Xerox in 1980.

• First standard as IEEE 802.3 in 1983 (10 Mbps over thick co-ax cables).

• currently 1 Gbps (802.3ab) copper cable ports used in most desktops and laptops.

• currently standards up to 100 Gbps (IEEE 802.3ba 2010).

• more than 85 % of current LAN lines worldwide 
(according to the International Data Corporation (IDC)).

 Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
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Network protocols & standards

Ethernet / IEEE 802.3 
OSI relation: PHY, MAC, MAC-client
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Network protocols & standards

Ethernet / IEEE 802.3 
OSI relation: PHY, MAC, MAC-client
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Network protocols & standards

Ethernet / IEEE 802.11 

Wireless local area network (WLAN) developed in the 90’s

• First standard as IEEE 802.11 in 1997 (1-2 Mbps over 2.4 GHz).

• Typical usage at 54 Mbps over 2.4 GHz carrier at 20 MHz bandwidth.

• Current standards up to 780 Mbps (802.11ac) over 5 GHz carrier at 160 MHz bandwidth.

• Future standards are designed for up to 100 Gbps over 60 GHz carrier.

• Direct relation to IEEE 802.3 and similar OSI layer association.

 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

 Direct-Sequence Spread Spectrum (DSSS)
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Network protocols & standards

Bluetooth 

Wireless local area network (WLAN) developed in the 90’s with different features than 802.11:

• Lower power consumption.

• Shorter ranges.

• Lower data rates (typically < 1 Mbps).

• Ad-hoc networking (no infrastructure required).

 Combinations of 802.11 and Bluetooth OSI layers
are possible to achieve the required features set.
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Network protocols & standards

Token Ring / IEEE 802.5 / 
Fibre Distributed Data Interface (FDDI)

• “Token Ring “ developed by IBM in the 70’s

• IEEE 802.5 standard is modelled after the IBM Token Ring architecture
(specifi cations are slightly different, but basically compatible)

• IBM Token Ring requests are star topology as well as twisted pair cables,
while IEEE 802.5 is unspecified in topology and medium

• Fibre Distributed Data Interface combines a token ring architecture 
with a dual-ring, fi bre-optical, physical network.

 Unlike CSMA/CD, Token ring is deterministic 
(with respect to its timing behaviour)

 FDDI is deterministic and failure resistant

 None of the above is currently used in performance oriented applications.
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Network protocols & standards

Fibre Channel

• Developed in the late 80’s.

• ANSI standard since 1994.

• Current standards allow for 16 Gbps per link.

• Allows for three different topologies:

 Point-to-point: 2 addresses

 Arbitrated loop (similar to token ring): 127 addresses  deterministic, real-time capable

 Switched fabric: 224 addresses, many topologies and concurrent data links possible

• Defi nes OSI equivalent layers up to the session level.

 Mostly used in storage arrays, 
but applicable to super-computers and high integrity systems as well.
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Network protocols & standards

Fibre Channel
Mapping of Fibre Channel to OSI layers:
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Network protocols & standards

Infi niBand

• Developed in the late 90’s

• Defi ned by the Infi niBand Trade Association (IBTA) since 1999. 

• Current standards allow for 25 Gbps per link.

• Switched fabric topologies.

• Concurrent data links possible (commonly up to 12  300 Gbps).

• Defi nes only the data-link layer and parts of the network layer.

• Existing devices use copper cables (instead of optical fi bres).

 Mostly used in super-computers and clusters but applicable to storage arrays as well.

 Cheaper than Ethernet or FibreChannel at high data-rates.

 Small packets (only up to 4 kB) and no session control.
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Distributed Systems

Distribution!

Motivation
Possibly …

 … fi ts an existing physical distribution (e-mail system, devices in a large craft, …).

 … high performance due to potentially high degree of parallel processing.

 … high reliability/integrity due to redundancy of hardware and software.

 … scalable.

 … integration of  heterogeneous devices.

Different specifi cations will lead to substantially different distributed designs.
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Distributed Systems

What can be distributed?

• State   Common operations on distributed data

• Function   Distributed operations on central data

• State & Function   Client/server clusters

• none of those  Pure replication, redundancy
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Distributed Systems

Common design criteria

 Achieve De-coupling / high degree of local autonomy

 Cooperation rather than central control

 Consider Reliability

 Consider Scalability

 Consider Performance
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Distributed Systems

Some common phenomena in distributed systems

1. Unpredictable delays (communication)
 Are we done yet?

2. Missing or imprecise time-base
 Causal relation or temporal relation?

3. Partial failures
 Likelihood of individual failures increases

 Likelihood of complete failure decreases (in case of a good design)
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Distributed Systems

Time in distributed systems

Two alternative strategies:

Based on a shared time  Synchronize clocks!

Based on sequence of events  Create a virtual time!



Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 549 of  758  (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

‘Real-time’ clocks
are:

• discrete – i.e. time is not dense and there is a minimal granularity

• drift affected:

Maximal clock drift d defi ned as: 

( ) ( )C t C t-
1 11

2 1
2 1# #d d+ +-
t t-^ ^h h

often specifi ed as PPM (Parts-Per-Million)
(typical 20.  PPM in computer applications) 

© 2020 Uwe R Zimmer The Australian National Universi

t 'real-time'1

1

ideal clock

d

C 'measured time'

1-(1+d)-1

real clock
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Distributed Systems

Synchronize a ‘real-time’ clock (bi-directional)

Resetting the clock drift by regular reference time re-synchronization:

Maximal clock drift d defi ned as: 

( ) ( )C t C t-
1 11

2 1
2 1# #d d+ +-
t t-^ ^h h

‘real-time’ clock is adjusted 
forwards & backwards

 Calendar time
t 'real-time'

C 'measured time'

sync.sync.sync.

ref. 
time

ref. 
time

ref. 
time

real clock

ideal
clock
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Distributed Systems

Synchronize a ‘real-time’ clock (forward only)

Resetting the clock drift by regular reference time re-synchronization:

Maximal clock drift d defi ned as: 

( ) ( )C t C t-
1 11

2 1
2 1# #d+ -
t t-^ h

‘real-time’ clock is adjusted 
forwards only

 Monotonic time
t 'real-time'

C 'measured time'

sync.sync.sync.

ref. 
time

ref. 
time

ref. 
time

ideal
clock
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Distributed Systems

Distributed critical regions with synchronized clocks
• 6 times: 
6 received Requests: Add to local RequestQueue (ordered by time)
6 received Release messages: 
                       Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
Add OwnRequest to local RequestQueue (ordered by time). 
Send OwnRequest to all processes.

2. Delay by L2  (L being the time it takes for a message to reach all network nodes)

3. While Top (RequestQueue) ≠ OwnRequest: delay until new message

4. Enter and leave critical region

5. Send Release-message to all processes.
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Distributed Systems

Distributed critical regions with synchronized clocks

Analysis
• No deadlock, no individual starvation, no livelock.

• Minimal request delay: L2 .

• Minimal release delay: L.

• Communications requirements per request: N2 1-^ h messages
(can be signifi cantly improved by employing broadcast mechanisms).

• Clock drifts affect fairness, but not integrity of the critical region.

Assumptions: 
• L is known and constant   violation leads to loss of mutual exclusion.

• No messages are lost   violation leads to loss of mutual exclusion.
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Distributed Systems

Virtual (logical) time [Lamport 1978]

( ) ( )a b C a C b<" &

with a b"  being a causal relation between a and b,
and ( )C a , ( )C b  are the (virtual) times associated with a and b

a b"  iff:
• a happens earlier than b in the same sequential control-fl ow or

• a  denotes the sending event of message m, 
while b denotes the receiving event of the same message m or

• there is a transitive causal relation between a and b:  a e e bn1" " " "f

Notion of concurrency: 

a b a b b a& " "/J Jz ^ ^h h
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Distributed Systems

Virtual (logical) time

( ) ( )a b C a C b<" &

Implications:

( ) ( ) ?C a C b< &

( ) ( ) ?C a C b &=

( ) ( ) ( ) ?C a C b C c< &=

( ) ( ) ( ) ?C a C b C c< < &
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Distributed Systems

Virtual (logical) time

( ) ( )a b C a C b<" &

Implications:

( ) ( ) ( )C a C b b a< & "J

( ) ( )C a C b a b& z=

( ) ( ) ( ) ?C a C b C c< &=

( ) ( ) ( ) ?C a C b C c< < &
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Distributed Systems

Virtual (logical) time

( ) ( )a b C a C b<" &

Implications:

( ) ( ) ( ) ( ) ( )C a C b b a a b a b< & " " 0J z=

( ) ( )C a C b a b a b b a& " "/J Jz= = ^ ^h h

( ) ( ) ( ) ?C a C b C c< &=

( ) ( ) ( ) ?C a C b C c< < &
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Distributed Systems

Virtual (logical) time

( ) ( )a b C a C b<" &

Implications:

( ) ( ) ( ) ( ) ( )C a C b b a a b a b< & " " 0J z=

( ) ( )C a C b a b a b b a& " "/J Jz= = ^ ^h h

( ) ( ) ( )C a C b C c c a< & "J= ^ h

( ) ( ) ( )C a C b C c c a< < & "J^ h
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Distributed Systems

Virtual (logical) time

( ) ( )a b C a C b<" &

Implications:

( ) ( ) ( ) ( ) ( )C a C b b a a b a b< & " " 0J z=

( ) ( )C a C b a b a b b a& " "/J Jz= = ^ ^h h

( ) ( ) ( ) ( ) ( )C a C b C c c a a c a c< & " " 0J z= =^ h

( ) ( ) ( ) ( ) ( )C a C b C c c a a c a c< < & " " 0J z=^ h
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Virtual (logical) time

Time as derived from causal relations: 
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 Events in concurrent control fl ows are not ordered.

 No global order of time.
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Implementing a virtual (logical) time

1. :P C 0i i6 =

2. :Pi6

6 local events: C C 1i i= + ;
6 send events: C C 1i i= + ; Send (message, Ci);
6 receive events: Receive (message, Cm); ( , )maxC C C 1i i m= + ;
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Distributed critical regions with logical clocks
• 6 times: 6 received Requests: 

 Add to local RequestQueue (ordered by time)
 Reply with Acknowledge or OwnRequest

• 6 times: 6 received Release messages: 
 Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
   Add OwnRequest to local RequestQueue (ordered by time). 
   Send OwnRequest to all processes.

2. Wait for Top (RequestQueue) = OwnRequest & no outstanding replies
3. Enter and leave critical region
4. Send Release-message to all processes.
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Distributed Systems

Distributed critical regions with logical clocks

Analysis
• No deadlock, no individual starvation, no livelock.

• Minimal request delay: N 1-  requests (1 broadcast) + N 1-  replies.

• Minimal release delay: N 1-  release messages (or 1 broadcast).

• Communications requirements per request: N3 1-^ h messages 
(or N 1-  messages + 2 broadcasts).

• Clocks are kept recent by the exchanged messages themselves.

Assumptions: 
• No messages are lost   violation leads to stall.
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Distributed critical regions with a token ring structure

1. Organize all processes in a logical or physical ring topology

2. Send one token message to one process

3. 6 times,  6processes: On receiving the token message:
1. If required the process 
            enters and leaves a critical section (while holding the token).
2. The token is passed along to the next process in the ring.

Assumptions: 
• Token is not lost  violation leads to stall.

(a lost token can be recovered by a number of means – e.g. the ‘election’ scheme following)
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Distributed critical regions with a central coordinator

A global, static, central coordinator 
 Invalidates the idea of a distributed system

 Enables a very simple mutual exclusion scheme

Therefore:

• A global, central coordinator is employed in some systems … yet …

• … if it fails, a system to come up with a new coordinator is provided.
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Electing a central coordinator (the Bully algorithm)
Any process P which notices that the central coordinator is gone, performs:

1. P sends an Election-message 
to all processes with higher process numbers.

2. P waits for response messages.
 If no one responds after a pre-defined amount of time: 
P declares itself the new coordinator and sends out a Coordinator-message to all.

 If any process responds, 
then the election activity for P is over and P waits for a Coordinator-message

All processes Pi perform at all times:

• If Pi receives a Election-message from a process with 
a lower process number, it responds to the originating process 
and starts an election process itself (if not running already).
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Distributed states
 How to read the current state of a distributed system?
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This “god’s eye view” does in fact not exist. 
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Distributed states
 How to read the current state of a distributed system?

P3 25
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Instead: some entity probes and collects local states. 
 What state of the global system has been accumulated?
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Distributed states
 How to read the current state of a distributed system?

P3 25
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Instead: some entity probes and collects local states. 
 What state of the global system has been accumulated?

 Connecting all the states to a global state.
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Distributed states

A consistent global state (snapshot) is defi ne by a unique division into:

• “The Past” P (events before the snapshot):
( ) ( )e P e e e P2 1 2 1" &/! !

• “The Future” F (events after the snapshot):
( ) ( )e F e e e F1 1 2 2" &/! !
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Distributed Systems

Distributed states
 How to read the current state of a distributed system?

P3 25
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Instead: some entity probes and collects local states. 
 What state of the global system has been accumulated?

 Sorting the events into past and future events.
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Distributed states
 How to read the current state of a distributed system?

P3 25
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Instead: some entity probes and collects local states. 
 What state of the global system has been accumulated?

 Event in the past receives a message from the future!
Division not possible  Snapshot inconsistent!
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Snapshot algorithm

• Observer-process P0 (any process) creates a snapshot token ts and saves its local state s0.

• P0 sends ts to all other processes.

• Pi6  which receive ts (as an individual token-message, or as part of another message):

• Save local state si and send si to P0.

• Attach ts to all further messages, which are to be sent to other processes.

• Save ts and ignore all further incoming ts‘s.

• Pi6  which previously received ts and receive a message m without ts:

• Forward m to P0 (this message belongs to the snapshot).
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Distributed states
 Running the snapshot algorithm:

P3 25
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• Observer-process P0 (any process) creates a snapshot token ts and saves its local state s0.

• P0 sends ts to all other processes.
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Distributed states
 Running the snapshot algorithm:

P3 25
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• Pi6  which receive ts (as an individual token-message, or as part of another message):

• Save local state si and send si to P0.

• Attach ts to all further messages, which are to be sent to other processes.

• Save ts and ignore all further incoming ts‘s.
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Distributed states
 Running the snapshot algorithm:

P3 25
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• Pi6  which previously received ts and receive a message m without ts:

• Forward m to P0 (this message belongs to the snapshot).
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Distributed states
 Running the snapshot algorithm:
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• Pi6  which receive ts (as an individual token-message, or as part of another message):

• Save local state si and send si to P0.

• Attach ts to all further messages, which are to be sent to other processes.

• Save ts and ignore all further incoming ts‘s.
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Distributed Systems

Distributed states
 Running the snapshot algorithm:
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• Save ts and ignore all further incoming ts‘s.
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Distributed states
 Running the snapshot algorithm:
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• Finalize snapshot
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Distributed states
 Running the snapshot algorithm:
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 Sorting the events into past and future events.

 Past and future events uniquely separated  Consistent state



Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 581 of  758  (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Snapshot algorithm

Termination condition?

Either

• Make assumptions about the communication delays in the system.

or

• Count the sent and received messages for each process (include this in the lo-
cal state) and keep track of outstanding messages in the observer process.
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Consistent distributed states
Why would we need that?

• Find deadlocks.

• Find termination / completion conditions.

• … any other global safety of liveness property.

• Collect a consistent system state for system backup/restore.

• Collect a consistent system state for further pro-
cessing (e.g. distributed databases).

• …
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A distributed server (load balancing)

ServerClient ServerClient
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A distributed server (load balancing)

Server
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A distributed server (load balancing)

Server
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A distributed server (load balancing)

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client Contention 
messages

Server

erver

Server

Server

Server erver

ver

Server

Serve

Server

errrr SSSSSS

verServ

rver

Se

errrrr

r Se

SSSSSServ

Server

rver

Client Contention
messages



Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 587 of  758  (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

A distributed server (load balancing)

Server
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A distributed server (load balancing)
with Ada.Task_Identification; use Ada.Task_Identification;

task type Print_Server is

   entry Send_To_Server (Print_Job : in Job_Type; Job_Done  : out Boolean);
   entry Contention     (Print_Job : in Job_Type; Server_Id : in  Task_Id);

end Print_Server;
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Distributed Systems

A distributed server (load balancing)
task body Print_Server is
   begin
      loop
         select

            accept Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean) do

               if not Print_Job in Turned_Down_Jobs then

                  if Not_Too_Busy then
                     Applied_For_Jobs := Applied_For_Jobs + Print_Job;
                     Next_Server_On_Ring.Contention (Print_Job, Current_Task);
                     requeue Internal_Print_Server.Print_Job_Queue;

                  else
                     Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
                  end if;

               end if;
            end Send_To_Server;

(...)
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         or
            accept Contention (Print_Job : in Job_Type; Server_Id : in Task_Id) do
               if Print_Job in AppliedForJobs then
                  if Server_Id = Current_Task then
                     Internal_Print_Server.Start_Print (Print_Job);
                  elsif Server_Id > Current_Task then
                     Internal_Print_Server.Cancel_Print (Print_Job);
                     Next_Server_On_Ring.Contention (Print_Job; Server_Id);
                  else
                     null; -- removing the contention message from ring
                  end if;
               else
                  Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
                  Next_Server_On_Ring.Contention (Print_Job; Server_Id);
               end if;
            end Contention;
         or
            terminate;
         end select;
      end loop;
   end Print_Server;
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Distributed Systems

Transactions

 Concurrency and distribution in systems 
with multiple, interdependent interactions?

 Concurrent and distributed
client/server interactions 

beyond single remote procedure calls?
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Distributed Systems

Transactions
Defi nition (ACID properties):

• Atomicity: All or none of the sub-operations are performed. 
Atomicity helps achieve crash resilience. If a crash occurs, then it is possible 
to roll back the system to the state before the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another consistent state.

• Isolation: Results (including partial results) are not revealed unless and until 
the transaction commits. If the operation accesses a shared data object, 
invocation does not interfere with other operations on the same object.

• Durability: After a commit, results are guaranteed to persist, 
even after a subsequent system failure.
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Distributed Systems

Transactions
Defi nition (ACID properties):

• Atomicity: All or none of the sub-operations are performed. 
Atomicity helps achieve crash resilience. If a crash occurs, then it is possible 
to roll back the system to the state before the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another consistent state.

• Isolation: Results (including partial results) are not revealed unless and until 
the transaction commits. If the operation accesses a shared data object, 
invocation does not interfere with other operations on the same object.

• Durability: After a commit, results are guaranteed to persist, 
even after a subsequent system failure.

iiss possibleiiii p iiiibbbblll

How to ensure consistency 

in a distributed system?

Actual isolation and 

effi cient concurrency?

Shadow copies?

Actual isolation or the 
appearance of isolation?

sub operations are performedsub operatiions are ppeerrffffffffffffffoorrmmmmeeeeddddddddddddddddddddd

Atomic operations 
spanning multiple processes?

What hardware do we 

need to assume?
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Distributed Systems

Transactions

A closer look inside transactions:

• Transactions consist of a sequence of operations.

• If two operations out of two transactions can be performed in any order with the 
same fi nal effect, they are commutative and not critical for our purposes.

• Idempotent and side-effect free operations are by defi nition commutative.

• All non-commutative operations are considered critical operations.

• Two critical operations as part of two different transactions while 
affecting the same object are called a confl icting pair of operations.
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Distributed Systems

Transactions

A closer look at multiple transactions:

• Any sequential execution of multiple transactions 
will fulfi l the ACID-properties, by defi nition of a single transaction.

• A concurrent execution (or ‘interleavings’) of multiple transactions 
might fulfi l the ACID-properties.

 If a specifi c concurrent execution can be shown to be equivalent to a specifi c sequential 
execution of the involved transactions then this specifi c interleaving is called ‘serializable’.

 If a concurrent execution (‘interleaving’) ensures that no transaction ever encounters 
an inconsistent state then it is said to ensure the appearance of isolation.
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Distributed Systems

Achieving serializability

 For the serializability of two transactions it is necessary and suffi cient 
for the order of their invocations 

of all confl icting pairs of operations to be the same 
for all the objects which are invoked by both transactions.

(Determining order in distributed systems requires logical clocks.)
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Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Order

Re W

• Two confl icting pairs of operations with the same order of execution.
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Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Write (B)

ead ((((((((AAAAAAAAAAAAAAA))))))))))))))))) WR

P1 P2

 Serializable
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Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A) Write (B)P2

P3

Write (B)

Order

Re

W

P1 P2

• Two confl icting pairs of operations with different orders of executions.

 Not serializable.
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Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

Re

Re

W

• Three confl icting pairs of operations with the same order of execution 
(pair-wise between processes).

• The order between processes also leads to a global order of processes.
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Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

Write (B)eeeeaad (((C)Write (A) RRRRRRe

eadddddd (((((((((((((((((AAAAAAAAAAAAAAAAAAAAAAAA)))))))))))))))))))) WR

P1 P2P3

• Three confl icting pairs of operations with the same order of execution 
(pair-wise between processes).

• The order between processes also leads to a global order of processes.

 Serializable
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Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

Re

Re

W

• Three confl icting pairs of operations with the same order of execution 
(pair-wise between processes).

• The order between processes also leads to a global order of processes.

 Serializable
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Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)

Read (C)

P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

R

W

eaRe

Re

W

P1 P2 P3

• Three confl icting pairs of operations with the same order of execution 
(pair-wise between processes).

• The order between processes does no longer lead to a global order of processes.

 Not serializable
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Distributed Systems

Achieving serializability
 For the serializability of two transactions it is necessary and suffi cient 

for the order of their invocations 
of all confl icting pairs of operations to be the same 

for all the objects which are invoked by both transactions.

• Defi ne: Serialization graph: A directed graph; 
Vertices i represent transactions Ti; 
Edges T Ti j"  represent an established global order dependency 
          between all confl icting pairs of operations of those two transactions.

 For the serializability of multiple transactions it is 
necessary and suffi cient 

that the serialization graph is acyclic.
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Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

Write (B)eeeeaad (((C)Write (A) RRRRRRe

eadddddd (((((((((((((((((AAAAAAAAAAAAAAAAAAAAAAAA)))))))))))))))))))) WR

P1 P2P3

• Three confl icting pairs of operations with the same order of execution 
(pair-wise between processes).

 Serialization graph is acyclic.

 Serializable
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Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)

Read (C)

P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

R

W

eaRe

Re

W

P1 P2 P3

• Three confl icting pairs of operations with the same order of execution 
(pair-wise between processes).

 Serialization graph is cyclic.

 Not serializable
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Distributed Systems

Transaction schedulers

Three major designs:

• Locking methods:
Impose strict mutual exclusion on all critical sections.

• Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

• “Optimistic” methods:
Go ahead until a confl ict is observed – then roll back.
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Distributed Systems

Transaction schedulers – Locking methods
Locking methods include the possibility of deadlocks  careful from here on out …

• Complete resource allocation before the start and release at the end of every transaction:

  This will impose a strict sequential execution of all critical transactions.

• (Strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation:

• Growing phase: locks can be acquired, but not released.

• Shrinking phase: locks can be released anytime, but not acquired (two phase locking) 
or locks are released on commit only (strict two phase locking).

 Possible deadlocks

 Serializable interleavings

 Strict isolation (in case of strict two-phase locking)

• Semantic locking: Allow for separate read-only and write-locks

 Higher level of concurrency (see also: use of functions in protected objects)
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Distributed Systems

Transaction schedulers – Time stamp ordering
Add a unique time-stamp (any global order criterion) on every transaction upon start. 
Each involved object can inspect the time-stamps of all requesting transactions.

• Case 1: A transaction with a time-stamp later than all currently active transactions applies: 
 the request is accepted and the transaction can go ahead.

• Alternative case 1 (strict time-stamp ordering):
 the request is delayed until the currently active earlier transaction has committed.

• Case 2: A transaction with a time-stamp earlier than all currently active transactions applies:
 the request is not accepted and the applying transaction is to be aborted.

 Collision detection rather than collision avoidance 
 No isolation  Cascading aborts possible.

 Simple implementation, high degree of concurrency
– also in a distributed environment, as long as a global event order (time) can be supplied.
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Distributed Systems

Transaction schedulers – Optimistic control

Three sequential phases:

1. Read & execute:
Create a shadow copy of all involved objects and 
perform all required operations on the shadow copy and locally (i.e. in isolation).

2. Validate:
After local commit, check all occurred interleavings for serializability.

3. Update or abort:

3a. If serializability could be ensured in step 2 then all results of involved transactions 
are written to all involved objects – in dependency order of the transactions.

3b. Otherwise: destroy shadow copies and start over with the failed transactions.
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Distributed Systems

Transaction schedulers – Optimistic control

Three sequential phases:

1. Read & execute:
Create a shadow copy of all involved objects and 
perform all required operations on the shadow copy and locally (i.e. in isolation).

2. Validate:
After local commit, check all occurred interleavings for serializability.

3. Update or abort:

3a. If serializability could be ensured in step 2 then all results of involved transactions 
are written to all involved objects – in dependency order of the transactions.

3b. Otherwise: destroy shadow copies and start over with the failed transactions.

How to create a consistent copy?

 rrrrrrrrrrreeeeeeeeeeeeeeeeeeeeeessssssssssssssssssuuuuuuuuuuuuuuuuuuulllllllllllllllltttttttttttttttttttsssssssssssssssss oooooooooooooooooooooofffffffffffffffffff iiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnvvvvvvvvvvvvvvvvvvvoooooooooooooooollllllllllllllllllvvvvvvvvvvvvvvvvvvveeeeeeeeeeeeeeedddddddddddddddddddd ttttttttttttttttrrrrrrrrrrrrrrraaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnssssssssssssssaaaaaaaaaaaaaaaacccccccccccccccccttttttttttttiiiiiiiiiiiiooooooooooooooooonnnnnnnnnnnnssssssssssssss l f i l d t ti
How to update all objects consistently?

((iiiiiiiiii e iiiiiiiiinn iiiiiissoolllllllllattttiiiiiion)))))))

Full isolation and 
maximal concurrency!

Aborts happen after everything 
has been committed locally.
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Distributed Systems

Distributed transaction schedulers
Three major designs:

• Locking methods:  no aborts
Impose strict mutual exclusion on all critical sections.

• Time-stamp ordering:  potential aborts along the way
Note relative starting times and keep order dependencies consistent.

• “Optimistic” methods:  aborts or commits at the very end
Go ahead until a confl ict is observed – then roll back.

 How to implement “commit” and “abort” operations
in a distributed environment?
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Distributed Systems

Two phase commit protocol
Start up (initialization) phase

0 Uwe R. Zimmer, The Australian National University page 613 of  y 758 (chapter 8: “Distributed Systems” up to pag8
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Distributed Systems

Two phase commit protocol
Start up (initialization) phase
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Distributed Systems

Two phase commit protocol
Start up (initialization) phase
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Distributed Systems

Two phase commit protocol
Start up (initialization) phase
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Distributed Systems

Two phase commit protocol
Start up (initialization) phase
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Distributed Systems

Two phase commit protocol
Start up (initialization) phase
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Distributed Systems

Two phase commit protocol
Phase 1: Determine result state
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Distributed Systems

Two phase commit protocol
Phase 2: Implement results
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Distributed Systems

Two phase commit protocol
Phase 2: Implement results
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Distributed Systems

Two phase commit protocol
Phase 2: Implement results
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Distributed Systems

Two phase commit protocol
Phase 2: Implement results
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Distributed Systems

Two phase commit protocol
or Phase 2: Global roll back
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Distributed Systems

Two phase commit protocol
or Phase 2: Global roll back
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Distributed Systems

Two phase commit protocol
Phase 2: Report result of distributed transaction

0 Uwe R. Zimmer, The Australian National University page 626 of  y 758 (chapter 8: “Distributed Systems” up to pag8

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Clien

Coord.

ver

rver

rver

Server

Server

ntttt

C

ver

rverCoordinator reports to client: 
"Committed" or "Aborted"



Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 627 of  758  (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed transaction schedulers
Evaluating the three major design methods in a distributed environment:

• Locking methods:  No aborts.
Large overheads; Deadlock detection/prevention required.

• Time-stamp ordering:  Potential aborts along the way.
Recommends itself for distributed applications, since decisions 
are taken locally and communication overhead is relatively small.

• “Optimistic” methods:  Aborts or commits at the very end.
Maximizes concurrency, but also data replication.

 Side-aspect “data replication”: large body of literature on this topic 
(see: distributed data-bases / operating systems / shared memory / cache management, …)
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Distributed Systems

Redundancy (replicated servers)
Premise: 

A crashing server computer should not compromise the functionality of the system
(full fault tolerance)

Assumptions & Means:

• k computers inside the server cluster might crash without losing functionality.

 Replication: at least k 1+  servers.

• The server cluster can reorganize any time (and specifi cally after the loss of a computer).

 Hot stand-by components, dynamic server group management.

• The server is described fully by the current state and the sequence of messages received.

 State machines: we have to implement consistent state adjustments (re-organization) 
and consistent message passing (order needs to be preserved).

[Schneider1990]
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Distributed Systems

Redundancy (replicated servers)

Stages of each server:

Job message received by all active servers

Job processed locally
Job message received locally

Received Deliverable

Processed
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Distributed Systems

Redundancy (replicated servers)
Start-up (initialization) phase

0 Uwe R. Zimmer, The Australian National University page 630 of  y 758 (chapter 8: “Distributed Systems” up to page8

Start up (initialization) phase

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client Ring of identical 
servers



Distributed Systems

© 2020 Uwe R. Zimmer, The Australian National University page 631 of  758  (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Redundancy (replicated servers)
Start-up (initialization) phase
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Distributed Systems

Redundancy (replicated servers)

Event: Server crash, new servers joining, or current servers leaving.

 Server re-confi guration is triggered by a message to all 
(this is assumed to be supported by the distributed operating system).

Each server on reception of a re-confi guration message:

1. Wait for local job to complete or time-out.

2. Store local consistent state Si.

3. Re-organize server ring, send local state around the ring.

4. If a state Sj with j i>  is received then S Si j%

5. Elect  coordinator

6. Enter ‘Coordinator-’ or ‘Replicate-mode’
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Summary

Distributed Systems

• Networks
• OSI, topologies 

• Practical network standards

• Time
• Synchronized clocks, virtual (logical) times

• Distributed critical regions (synchronized, logical, token ring)

• Distributed systems
• Elections

• Distributed states, consistent snapshots

• Distributed servers (replicates, distributed processing, distributed commits)

• Transactions (ACID properties, serializable interleavings, transaction schedulers)




